[에세이]AI의 개인화(Personalization), 어디까지 허용할 것인가?

김서경
2023-07-12

🔗숲사이(soopsci)는 '사단법인 변화를 꿈꾸는 과학기술인 네트워크(ESC)'에서 운영하는 과학기술인 커뮤니티입니다.

본 글은 ESC에서 사회적협동조합 빠띠에서 운영하는 캠페인즈에 기고한 글로 동시 개재 허락을 받고 숲사이에도 함께 공유합니다. 원글 출처 링크  


작성자: 김서경 (페블러스 UX 리서치 리드 , ESC 회원) 


지난 2022년 겨울, 혜성처럼 등장한 챗GPT로 인해 전세계는 AI 열풍에 휩싸였다. 간단한 홍보문이나 이메일 작성은 물론이요, 코드를 짜거나 원하는 화풍으로 그림을 그리거나 사진의 배경을 보정하는 것 역시 몇 마디 입력만으로 손쉽게 가능한 세상이 성큼 다가왔다. 


정부와 대기업과 수많은 스타트업이 갑자기 나타난 이 멋진 도구에 혈안이 된 가운데, 인류는 고민에 빠졌다. AI가 정말 인류를 찜쪄먹을 막강한 지능에 이르는 게 시간 문제라면, 지금이 고삐를 잡을 골든타임이 아닐까? AI가 악용되거나 남용되거나 피해를 끼치지 않도록 제어하는 동시에 그 혜택을 온전히 누릴 방법은 없는 걸까?


이 글에서는 그러한 고민들 중 한 가닥인 AI의 개인화(Personalization)에 대해 논한다. 개인화란 무엇이며 어떤 사례가 있는지 먼저 설명한 후, 예상 가능한 문제와 그 문제를 바라봐야 할 윤리적 관점에 대해 소개한 후 끝을 맺는다. 


개인화란 무엇인가

개인화의 정의란, “개별 고객 혹은 고객 집단의 요구 사항을 수용하기 위해 (관심사나 구매 이력을 바탕으로) 서비스 또는 제품을 고객에게 맞추어 조정하는 것을 말한다.”[1]  보다 널리 쓰이는 “맞춤추천”이라는 용어를 떠올리면 금방 와닿을 것이다. 


개인화의 사례

개인화는 생각보다 우리 일상에 깊게 스며들어 있다. 한 예로 운동화를 사기 위해 검색을 하다가 알림이 와서 SNS를 켰는데, 화면이 온통 방금 전에 보던 운동화로 도배되는 경험을 해보지 않은 사람은 없을 것이다. 이커머스 플랫폼에서 생필품을 구매하면 자동으로 유사한 생필품이 추천된다든가, 음악 서비스에 가입하는 과정에서 취향에 맞는 음악 장르를 체크하게 하는 등, 다양한 기업이 다양한 방식으로 고객의 관심사를 파악해 제품 및 서비스를 추천하는 데 반영하려 애쓰고 있다. 


특히 필자의 경우, 개인화가 이루어지는 실제 사례를 가까이서 생생하게 접했던 적이 있다. 카카오에 다닐 때는 추천 시스템 팀에서 근무했는데, 카카오 산하 모든 서비스의 추천기능을 개발하고 관리하는 팀이었다. 당시 내가 담당한 업무는 멜론의 음악 맞춤추천 기능을 보다 유저 친화적으로 만드는 방안을 연구하는 것이었다. 


그런데, 막상 업무를 해 보니 개인화 과정은 생각보다 쉽지 않다는 걸 알게 되었다. 취향에 맞는 음악을 알아서 골라 준다면 얼핏 듣기에 좋을 것 같지만, 그렇게 추려진 음악이 실제로도 유저의 입맛에 맞을지는 모르기 때문이다. 뿐만 아니라, 과도하거나 맥락에 맞지 않는 개인화는 도리어 유저의 피로도를 높여 역효과를 낼 수도 있다. 윤리적인 문제 역시 여전히 현재진행형이다. 맞춤추천의 질을 높이려면 유저의 개인적 정보를 최대한 확보해야 하는데, 이 과정에서 프라이버시를 침해하거나, 허락을 받지 않고 정보를 수집하거나, 수집한 정보를 오남용할 수 있기 때문이다. 


AI 개인화, 무엇이 문제인가

챗GPT의 시대가 도래하면서, 위에서 언급한 문제들의 심각성 역시 커졌다. 챗GPT가 워낙 유용성이 크다 보니 알아서(!) 혹은 저도 모르게 개인정보를 입력하는 경우가 빈발하고 있고, 최근 업무를 수행하는 과정에서 회사의 대외비 정보를 입력했다가 이슈가 된 사례들이 있다. 물론 더 많은 정보를 제공할수록 더 편리한 서비스를 받을 수 있는 건 사실이지만, 정보를 수집하는 서비스가 있다면 수집된 정보를 관리하고 열람하는 주체 역시 있기 마련이다. 해당 주체가 행여나 사익을 우선하여 수집된 방대한 양의 정보를 오남용하지는 않을지, 수집한 정보를 얼마나 윤리적으로 관리하고 활용할지 여부는 확실치 않기에 늘 문제가 된다.    


챗GPT의 엔진인 AI의 특성상, 수집된 정보의 속성은 그 결과물에도 직접적으로 영향을 미친다. 이전 세대의 AI 챗봇이었던 ‘이루다’의 사례만 보아도 알 수 있듯, 유저들이 입력한 혐오 발언이나 성적으로 부적절한 언동을 학습해 고스란히 채팅에 반영하는 등 논란을 일으켰고, 결국 3주 만에 서비스가 잠정 중단됐다.[2] AI는 정보를 학습하고 판독해 결과물을 내보내는 시스템이기에, 해당 정보가 윤리적으로 어떤 문제를 지니고 있는지 판단하는 것은 결국 사용하는 사람의 몫이다. 


그렇게 생각하면, 특정 집단이나 단체가 자신들이 선호하는 형태의 개인화를 위해 AI 시스템을 ‘오염’시킬 여지도 있다. 종교적이나 정치적으로 폐쇄된 지역 혹은 국가에서, 권력을 잡은 주체가 시스템을 통제하며 그들의 입맛에 맞는 내용만을 학습시킬 수도 있다. 또한 타인에 대한 의도적인 공격이나 상해를 입히기 위한 목적으로 AI 시스템을 악용할 수도 있다. 가상의 예시일 뿐이지만, 폭탄을 실은 IoT 드론에 AI 시스템을 연결한 후 프롬프트를 활용해 묻지마 테러를 벌일 수도 있는 것이다.   


어떻게 밸런스를 잡아야 할까

이처럼 예상되는 다양한 윤리적 문제에 대해 우리는 어떻게 대응해야 할까? 


비록 여러 심각한 윤리적 문제를 일으킬 가능성을 내포하고 있지만, 챗GPT는 여전히 대단히 유용한 도구이며 사회 다방면으로 활용될 잠재력이 무궁무진하다. 오히려 위에서 언급한 윤리적인 문제들을 적절하게 해결할 수만 있다면, 보다 많은 개인 및 집단이 더 큰 혜택을 누릴 수 있으리라 본다. 


특히 AI 개인화를 활용하는 과정에서 염두에 두어야 할 접근 방식은 ‘최적화'이다. 개인화 기술을 제품이나 서비스에 적용할 때의 맥락은 복잡다단하기에, 상황에 맞는 최적의 지점을 찾아 시시각각 탄력적으로 운용할 필요가 있다. 이러한 최적화를 위해 필수적인 기준을 제공하는 스펙트럼은 다음과 같다:    


1. 오남용 및 악용으로부터 중요한 개인 정보를 보호하는 동시에, 만족스러운 서비스를 제공하기에 알맞은 정도의 정보를 수집한다.

2. 각 개인의 표현의 자유를 가능한 한 존중하는 동시에, 명백하게 유해하거나 위협적일 수 있는 표현을 규제한다.


‘만족스러운 서비스’, ‘알맞은 정도의 정보’, ‘표현의 자유’ 등등 위 스펙트럼을 구성하는 요소들은 개인화가 일어나는 상황에 맞추어 다르게 해석하여 적용해야 한다. 


가령 자산관리 서비스라면, 개인의 중요한 정보인 입출금 내역 정보를 수집하지 않고는 서비스를 운영할 수 없을 것이다. 자산관리가 필요해 서비스에 가입한 유저 역시 정작 입출금 내역이 제대로 관리되지 않는다면 불만을 터뜨릴 것이다. 즉 이런 경우에는 해당 정보를 수집하되, 수집하는 과정에서 유저의 동의를 얻고, 관리하는 과정에서 가명처리 등의 보안기술을 활용하여 오남용을 방지하는 등, 운영 주체와 유저 모두가 만족할 수 있는 최적의 지점을 찾아가는 것이다. 


모두가 참여해 함께 만들어 가는 개인화

AI 개인화의 경우, 개인화를 실제 제품이나 서비스에 적용하는 기관 및 기업의 참여 뿐 아니라 시민의 적극적인 참여 역시 필요하다. 앞서 말했듯, AI 개인화는 수천 수만의 유저가 제공한 정보를 학습한 결과로써 이루어지기 때문이다. 각 유저 혹은 유저 집단이 원하는 수준의 개인화는 저마다 다를 수 있다. 소수 집단이나 약자의 필요를 누락하지 않으면서 모두의 의견을 시스템에 반영하기 위해서는, 정보를 수집하고 알고리즘에 적용하는 절차를 어떻게 구성해야 할지에 대한 논의가 필요하다. 


실제로 지난 5월 말, 챗GPT를 서비스하는 오픈AI 측에서는 AI 시스템을 장기적으로 관리하기 위한 민주주의적 절차에 대한 시범적 연구를 지원하는 펠로십을 주최하기도 했다. 지금이 바로 이들 유저 겸 시민의 의견이 공정한 민주주의적 절차를 통해 반영될 수 있는 시스템을 도입하는 것에 대해 고민해야 할 타이밍이 아닐까.


마치며 

지금까지 AI 개인화란 무엇이며 어떤 윤리적 문제를 내포하고 있는지, 문제를 해결하기 위해서는 어떤 접근 방식이 필요한지에 대해 알아보았다. AI는 인류 문명이 낳은 가장 뛰어난 지적 결실이자, 어느 한두 단체의 소유물이 아닌 전 인류의 것이어야 한다. 이를 위해 가능한 한 많은 시민이 AI의 윤리적 문제에 대해 인식하고, 함께 해결 방안에 대한 컨센서스를 만들어 갈 수 있기를 바란다. 


참고 자료 

[1] Wikimedia Foundation. (2023, June 26). Personalization. Wikipedia.  

[2] 결국, 잠정 중단된 스캐터랩 AI 챗봇 이루다 사태가 보여준 문제 3가지. AI타임스. (2021, January 12).

 
#인공지능윤리를묻다 


ESC 진행 (예정)행사 (참여하면 넓어지는 과학 이야기)


10월 11일(금)~13일(일)


10월 12일(토)

숲사이는 ESC에서 운영하는 과학기술인 커뮤니티입니다.
용약관   |   개인정보처리방침   |   공지 
(04779) 서울특별시 성동구 뚝섬로1나길 5, S732 (성수동1가, 헤이그라운드 성수 시작점) 

Copyright ⓒ 사단법인 변화를 꿈꾸는 과학기술인 네트워크(ESC) All rights reserved.    


운영진 게시판 


숲사이는 ESC에서 운영합니다.

이용약관  |  개인정보처리방침  |  공지

(04768)  서울특별시 성동구 뚝섬로1나길 5, S732

Copyright ⓒ 사단법인 변화를 꿈꾸는 과학기술인 네트워크(ESC) All rights reserved.
운영진 게시판